Featured Articles

Nvidia officially launches the 8-inch Shield Tablet

Nvidia officially launches the 8-inch Shield Tablet

As expected and reported earlier, Nvidia has now officially announced its newest Shield device, the new 8-inch Shield Tablet. While the…

More...
Intel launches new mobile Haswell and Bay Trail parts

Intel launches new mobile Haswell and Bay Trail parts

Intel has introduced seven new Haswell mobile parts and four Bay Trail SoC chips, but most of them are merely clock…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
AMD SVP John Byrne named turnaround exec of the year

AMD SVP John Byrne named turnaround exec of the year

Director of AMD’s PR Chris Hook has tweeted and confirmed later in a conversation with Fudzilla that John Byrne, Senior Vice…

More...
AMD A8-7600 Kaveri APU reviewed

AMD A8-7600 Kaveri APU reviewed

Today we'll take a closer look at AMD's A8-7600 APU Kaveri APU, more specifically we'll examine the GPU performance you can…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 24 June 2013 09:45

Researcher makes batteries on 3d printer

Written by Nick Farrell



Very small ones

A researcher has used her 3D printer for something more than creating action figures of herself.

Jennifer Lewis, senior author of a recent 3D printing study, who is also the Hansjörg Wyss Professor of Biologically Inspired Engineering at the Harvard School of Engineering and Applied Sciences (SEAS) has come up with a way to print lithium-ion microbatteries the size of a grain of sand.

The printed microbatteries could supply electricity to tiny devices in fields from medicine to communications, including many that have lingered on lab benches for lack of a battery small enough to fit the device, yet provide enough stored energy to power them. She printed precisely interlaced stacks of tiny battery electrodes, each less than the width of a human hair.

The results have been published online in the journal Advanced Materials.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments